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Abstract

The notion of a perfect coloring, introduced by Delsarte, generalizes the concept of completely regular code. A perfect
z-colorings of a graph is a partition of its vertex set. It splits vertices into z parts Py, - -, P, such that for alli,j € {1,--- ,z}, each
vertex of P is adjacent to pyj, vertices of P;. The matrix P = (pij)ije(1,... ), is called parameter matrix. In this article, we classify
all the realizable parameter matrices of perfect 4-colorings of some the generalized peterson graph.
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1. Introduction

The concept of a perfect z-coloring plays a significant role in graph theory, algebraic combinatorics,
and coding theory (completely regular codes). There is another phrase for this concept in the writing as
“equitable partition” see [8]. In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in
Johnson graphs. Since then, some effort has been made to count the parameter matrices of some Johnson
graphs, including J(4,2), J(5,2), J(6,2), J(6,3), J(7,3), J(8,3), J(8,4), and J(v,3) (v odd) [2, 3, 7].

Fon-Der-Flass count the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q,, for
n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-
colorings of the n-dimensional cube with a given parameter matrix [4, 5, 6]. In this article, we classify the
parameter matrices of all perefect 4-colorings of some generalized peterson graph.

Some generalized peterson graph including GP(7,1), GP(8,1), GP(8,2) and GP(8,3) given as follow:
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Figure 1: Some generalized peterson graph

Definition 1.1. The generalized peterson graph GP(n, k) has vertices,respectively, edges given by

V(GP(n,k)) ={ai,bi:0<i<n—1},
E(GP(n,k)) ={aiait1, aibi, bibiyx: 0 <i<n—1},

Where the subscripts are expressed as integers modulo n (> 5) , and k (> 1) is the skip.

Definition 1.2. For a graph G and an integer z, a mapping T : V(G) — {1,2,---,z} is called a perfect
z-coloring with matrix P = (pij)ie(1,... -}, if it is surjective,and for all 1, j,for every vertex of color i, the
number of its neighbours of color j is equal to pi; . The matrix P is called the parameter matrix of a perfect
coloring. In the case z = 4, we call the first color white that show by W, the second color black that show
by B and the third color red that show by R and the color foure green that show by G.
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2. Preliminaries

In this section, we present some results concerning necessary conditions for the existence of perfect
4-coloring of some generalized peterson graph with a given parameter matrix
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The simplest necessary condition for the existence of perfect 4-colorings of some generalized peterson
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i 3 k1

m n o p

a+b+c+d=e+f+g+h=i+j+k+l=m+n+o+p=4

Theorem 2.1. [8] If T is a perfect coloring of a graph G with z colors, then any eigenvalue of T is an eigenvalue of
G.
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Remark 2.3. The distinct eigenvalues of the graph GP(7, 1) are the numbers 3,1, The distinct eigenvalues of
the graph GP(8,1) are the numbers 3,1,-1, The distinct eigenvalues of the graph GP(8,2) are the numbers
1,3 and the distinct eigenvalues of the graph GP(8,3) are the numbers 3,1,-1.

By using Theorem 2.1, we only have the following matrices, which we have shown with Py, -- -, P3;.
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3. Perfect 4-colorings of some generalized peterson graph
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The parameter matrices of GP(7,1), GP(8,1), GP(8,2) and GP(8,3) graphs are enumerated in the next

teorems.

Theorem 3.1. The graph GP(7,1) has no perfect 4-colorings.
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Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(7,1) may be one of the
matrices Py, ---,P3;. By using Theorem 2.2, only the matrices P1, Pis, P26 can be a parameter matrices,
because the number of white, black, red and green are an integer. For matrix Py, each vertex with color
green has one adjacent vertices with color green. Now have the following possibilities:

(1) T(a1) = B, T(az) = T(as) = T(ay) = T(as) = T(ag) = R, T(ag) = T(a7) = T(ag) = T(az) = G,
T(a14) = W and then T(ay1) = G, T(ajp) = T(app) = B, which is a contradiction with four row of
matrix Pq.

(2) T(a1) =W, T(az) = T(aws) = B, T(ay) = T(as) = T(a11) = T(arz) = T(az) = Rand T(a¢) = T(ay) =
T(ajp) = G then T(ay) = T(ag) = T(ag) = G,which is a contradiction with the four row of matrix P;.
Hence graph GP(7,1) has no perfect 4-colorings with matrix P;.

Similar to matrix Py, we can proof for matrices P14 and Py as follows:
For matrix Py, each vertex with color white has three adjacent vertices with color red. Now have the
following possibilities:

) T(a1) = T(az) = T(ag) = T(aw) = G, T(ag) = T(ag) = T(az) = R, T(as) = T(ag) = B and
T(as) = T(a1) = T(ay3) = W then T(ay4) = R and T(ay) = G, which is a contradiction with the
three row of matrix Pye.

(4) T(a1) = T(as) = T(ag) = T(an1) = T(az) = W, T(az) = B, T(az) = T(ag) = T(as) = T(aip) =
T(a2) = R then T(ay) = T(ag) = R and T(ay4) = B, which is a contradiction with the three row of
matrix P1¢. Hence graph GP(7,1) has no perfect 4-colorings with matrix Pyg.

For matrix Py, each vertex with color white has two adjacent vertices with color green, and each vertex
with color green has zero adjacent vertices with color red. Now have the following possibilities:

(5) T(a1) = T(az) = T(arz) = T(as) = B, T(ay) = T(as) = T(ag) = T(a7) = T(aiz) = R, T(ag) =
T(aip) = T(aj1) = G then T(az) = R and T(a9) = W, which is a contradiction with the one row of
matrix Poyg.

(6) T(a1) = T(az) = T(az) = T(ap) = T(ann) = T(a14) = R, T(as) = T(az) = T(ag) = T(a) = B,
T(as) = T(ag) = G then T(ag) = G and T(aj3) = R, which is a contradiction with the four row of
matrix Pys. Hence graph GP(7,1) has no perfect 4-colorings with matrix Pag.

]
Theorem 3.2. The graph GP(8,1) has a perfect 4-colorings only with the matrices P1g, Pao, P21 and Pag.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(8,1) may be one of the
matrices Py, ---,P3;. Using the Theorem 2.2, only the matrices Py, P1g, P12, P13, P19, P20, P21, P22, P23, Pog,
and Ppg can be a parameter matrices, because the number of white, black, red and green are an integer.
For matrix P4, each vertex with color white has three adjacent vertices with color green and each vertex
with color red has one adjacent vertices with color green. Now have the following possibilities:

(1) T(a1) = W, T(ag) = B, T(az) = T(as) = T(an1) = T(az) = R, T(az) = T(ay) = T(ag) = T(ag) =
T(aip) = T(a13) = G then T(ay4) = B and T(a15) = W and T(a16) = R, which is a contradiction with
one row of the matrix Py.

(2) T(a1) = T(az) = T(ag) = T(ag) = T(an1) = T(as) = G, T(az) = T(as) = T(arz) = T(az) = R,
T(ay) = T(ajp) = W, T(aq) = B then T(ag) = T(a15) = G and T(aj4) = R, which is a contradiction
with three row of the matrix P4. Hence graph GP(8,1) has no perfect 4- colorings with the matrix
P4.
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The proof of the matrices P1z, P13, P19, P22, P23, Pos is similar to the proof of the matrix P4. Consider the
mapping Ty, Tp, T3 and Ty as follows:

Ti(a1) = Ti(as) = Ti(ap) = Ti(az) =W, Ti(az) = Ti(as) = Ti(ai5) = Ti(as) =B
Ti(az) = Ti(ag) = Ti(a11) = Tilar) =R, Ti(a2) = Ti(as) = Ti(ag) = Ti(as) = G.

Ta(aq)
Ta(a4)

To(as) = Ta(ar1) = T2(ass)
T2(ag) = Ta(aqo) a4

W, T(az) =Ta(ag) = T2(arz) = T2(ase) = B,
To(a4) =R,

T2(a3) = Ta(az) = Ta(ag) = Tr(az) = G.

T3(a1) = T3(as) = Tz(a11) = Tz3(a15) =W, Tz(az) = T3(ae) = Tz(ar2) = Tz3(ais) =B,
T3(ag) = Tz(aio) = Ts(ai3) = T3(ais) =R, Tz(a3z) = T3(as) = T3(ay) = Tz(ag) = G.

Ta(ar) = Talas) = Talas) = Talag) =W, Talai) = Talarr) = Talas) = Ta(ass) =B,
a7) =R, Tylag) = Ty(arn) = Ta(az) = Ta(as) = G.

It is clear that Ty, T, Tz and Ty are perfect 4-coloring with the matrices P1g, P20, P21 and Pog respectively. [
Theorem 3.3. The graph GP(8,2) has a perfect 4-colorings with only the matrices P1g and P1a.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(8, 2) may be one of the
matrices Py, - - -, P31. By using Theorem 2.2, graph GP(8,2) can have perfect 4-colorings only with matrices
P10, P12, P13, P19, P22 and Pyy4, because the number of white, black, red and green are an integer. For matrix
P13, each vertex with color white has one adjacent vertices with color red and two adjacent vertices with
color green. Now have the following possibilities:

(1) T(a1) = T(ag) = T(aw) = T(ais) = W, T(az) = T(asz) = T(ag) = T(ay) = T(an) = T(as) =
G,T(ay) =T(ag) =R, T(ais) = T(ag) = B, then T(as) = W and T(ag) = B, which is a contradiction
with one row of the matrix Pq3.

(2) T(a1) = T(az) = T(as) = T(ag) = T(ai5) = B, T(az) = T(as) = T(ans) = W, T(as) = T(ag) =
T(a2) =G, T(aj1) = T(ajz) = R, then T(az) = T(azs) = R and T(ay9) = W, which is a contradiction
with one row of the matrix P13. Hence graph GP(8,2) has no perfect 4-colorings with the matrix Py3.

The proof of the matrices Pig, P2y, Py4 is similar to the proof of the matrix P13. Consider the mapping Ty
and T, as follows:

Ti(a11) = Ti(an) = Ti(as) = Ti(ae) =W, Ti(ar1) = Ti(az) = Ti(as) = Ti(as) =B,
Ti(az) = Ti(as) = Ti(az) = Ti(ag) =R, Ti(ag) = Ti(ai) = Ti(ai3) = Ti(as) = G.

To(a1) = Ta(az) = Talas) = Talay) =W, Thlai) = T2(arz) = Ta(as) = Ta(ais) =B,
To(ag) = To(arr) = To(aiz) = Tao(ais) =R, Th(az) = Ta(ag) = Ta(as) = Ta(ag) = G.

It is clear that T; and T, are perfect 4-coloring with the matrices P1g and Py, respectively. O
Theorem 3.4. The graph GP(8,3) has a perfect 4-colorings only with the matrices Pg, Po1 and Pog.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(8,3) may be one of the
matrices Py, ---,P3;. By using Theorem 2.2, graph GP(8,3) can have perfect 4- colorings with matrices
P10, P11, P12, P13, P19, P2o, P21, P22, P23, Pog and Pag, because the number of white, black, red and green are
an integer. For matrix Pjp, each vertex with color white has one adjacent vertices with color red and two
adjacent vertices with color green. Now have the following possibilities:
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(1) T(a1) = T(ag) = T(ag) = T(ag) = B, T(az) = T(az) = T(as) = T(aip) =R, T(ay) = T(az) = T(aw) =
T(ae) = G, T(a11) = T(aiz) = W, then T(ay) = T(a5) = W, which is a contradiction with one row
of the matrix Pqp.

(2) T(a1) = T(as) = T(as) = R, T(az) = T(a11) =W, T(az) = T(aio) = T(az) = T(ai3) = T(aws) = G,
T(ag) = T(ag) = T(azs) = B, then T(ay) = T(ag) = T(ag) = W, which is a contradiction with one
row of the matrix P1g. Hence graph GP(8,3) has no perfect 4-colorings with the matrix Pyy.

The proof of the matrices P11, P12, P13, P19, P2o, P23, P24 is similar to the proof of the matrix Pyy.
Consider the mapping Ty, T, and T3 as follows :

Ti(a1) = Tilas) = Ti(ag) = Ti(an) =W, Ti(az) =Ti(as) = Ti(ar) = Ti(ai4)
Ti(as) = Ti(ag) = Ty(az) = Tilas) =R, Ti(az) = Ti(az) = Ti(ai) = Ti(ass)

7

B
G.

To(a1) = Tao(as) = Talag) = Ta(ap) =W, To(as) = Ta(ag) = Ta(arz) = Ta(ass) =B,

Ta(a2) = Ta(a3z) = Ta(arg) = Taolann) =R, Talag) = Ta(ay) = Tr(as) = To(as) = G.
T3(a1) = T3(az2) = Ts(ag) = Tz(aip) =W, Ts(as4) = T3(ay) = T3(az) = Tz(as5) = B,
T3(az) = T3(ag) = Ts(a11) = Tz(aie) =R, Ts(as) = Tz(ae) = Tz3(az) = T3(as) = G.
It is clear that Ty, T, and T are perfect 4-coloring with the matrices Py, P21 and Pag respectively. O

Finally, we summarize the results of this paper in the following table.

Table 1: Parameter matrices of some generalized peterson graph

Graphs Parameter Matrices
GP(7,1) X

GP(8,1) P10, P2o, P21, Pag
GP(8,2) P10, P12
GP(8,3) P20, Pa1, Pas
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