Communications in Combinatorics, Cryptography \& Computer Science

Perfect 4-colorings of some generalized Peterson graph

Mehdi Alaeiyan ${ }^{\text {a,* }}$, Zahra Shokoohi ${ }^{\text {b }}$
${ }^{a}$ aschool of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran.
${ }^{b}$ School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

Abstract

The notion of a perfect coloring, introduced by Delsarte, generalizes the concept of completely regular code. A perfect z-colorings of a graph is a partition of its vertex set. It splits vertices into z parts P_{1}, \cdots, P_{z} such that for all $i, j \in\{1, \cdots, z\}$, each vertex of P_{i} is adjacent to $p_{i j}$, vertices of P_{j}. The matrix $P=\left(p_{i j}\right)_{i, j \in\{1, \cdots, z\}}$, is called parameter matrix. In this article, we classify all the realizable parameter matrices of perfect 4-colorings of some the generalized peterson graph.

Keywords: Parameter matrices, Perfect coloring, Equitable partition, Generalized peterson graph.
2020 MSC: 03E02, 05C15, 68R05.
(C)2021 All rights reserved.

1. Introduction

The concept of a perfect z-coloring plays a significant role in graph theory, algebraic combinatorics, and coding theory (completely regular codes). There is another phrase for this concept in the writing as "equitable partition" see [8]. In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Since then, some effort has been made to count the parameter matrices of some Johnson graphs, including $J(4,2), J(5,2), J(6,2), J(6,3), J(7,3), J(8,3), J(8,4)$, and $J(v, 3)(v$ odd) $[2,3,7]$.

Fon-Der-Flass count the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q_{n} for $n<24$. He also obtained some constructions and a necessary condition for the existence of perfect 2 colorings of the n-dimensional cube with a given parameter matrix $[4,5,6]$. In this article, we classify the parameter matrices of all perefect 4-colorings of some generalized peterson graph.

Some generalized peterson graph including $\operatorname{GP}(7,1), \operatorname{GP}(8,1), \operatorname{GP}(8,2)$ and $\operatorname{GP}(8,3)$ given as follow:

[^0]
$G P(7,1)$

$G P(8,1)$

$G P(8,2)$

$G P(8,3)$

Figure 1: Some generalized peterson graph
Definition 1.1. The generalized peterson graph $\operatorname{GP}(n, k)$ has vertices,respectively, edges given by

$$
\begin{aligned}
& \mathrm{V}(\operatorname{GP}(\mathrm{n}, \mathrm{k}))=\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{i}: 0 \leqslant i \leqslant n-1\right\}, \\
& \mathrm{E}(\operatorname{GP}(n, k))=\left\{a_{i} a_{i+1}, a_{i} b_{i}, b_{i} b_{i+k}: 0 \leqslant i \leqslant n-1\right\},
\end{aligned}
$$

Where the subscripts are expressed as integers modulo $n(\geqslant 5)$, and $k(\geqslant 1)$ is the skip.
Definition 1.2. For a graph G and an integer z, a mapping $T: V(G) \longrightarrow\{1,2, \cdots, z\}$ is called a perfect z-coloring with matrix $\mathrm{P}=\left(p_{i j}\right)_{i, j \in\{1, \cdots, z\}}$, if it is surjective,and for all i, j, for every vertex of color i, the number of its neighbours of color j is equal to $p_{i j}$. The matrix P is called the parameter matrix of a perfect coloring. In the case $z=4$, we call the first color white that show by W , the second color black that show by B and the third color red that show by R and the color foure green that show by G .

2. Preliminaries

In this section, we present some results concerning necessary conditions for the existence of perfect 4-coloring of some generalized peterson graph with a given parameter matrix

$$
P=\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]
$$

The simplest necessary condition for the existence of perfect 4-colorings of some generalized peterson with the matrix $\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$ is

$$
\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=\mathrm{e}+\mathrm{f}+\mathrm{g}+\mathrm{h}=\mathrm{i}+\mathfrak{j}+\mathrm{k}+\mathrm{l}=\mathrm{m}+\mathrm{n}+\mathrm{o}+\mathrm{p}=4
$$

Theorem 2.1. [8] If T is a perfect coloring of a graph G with z colors, then any eigenvalue of T is an eigenvalue of G.

Theorem 2.2. [1] Let T a perfect 4-coloring of a graph G with matrix $P=\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$
(1) if $b, c, d \neq 0$, then

$$
\begin{array}{ll}
|\mathrm{W}|=\frac{|\mathrm{V}(\mathrm{G})|}{1+\frac{\mathrm{b}}{e}+\frac{\mathrm{c}}{\mathrm{i}}+\frac{\mathrm{d}}{\mathrm{~m}}} & , \\
|\mathrm{R}|=\frac{|\mathrm{B}|=\frac{|\mathrm{V}(\mathrm{G})|}{\frac{\mathrm{e}}{\mathrm{~b}}+1+\frac{e \mathrm{c}}{\mathrm{bi}}+\frac{e \mathrm{~d}}{\mathrm{bm}}}}{\frac{\mathrm{i}}{\mathrm{c}}+\frac{\mathrm{ib}}{\mathrm{ce} e}+1+\frac{i d}{\mathrm{~cm}}} & ,
\end{array},|\mathrm{G}|=\frac{|\mathrm{V}(\mathrm{G})|}{\frac{\mathrm{m}}{\mathrm{~d}}+\frac{\mathrm{mb}}{\mathrm{de}}+\frac{\mathrm{mc}}{\mathrm{di}}+1} .
$$

(2) if $b, c, h \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{b}{c}+\frac{c}{i}+\frac{b h}{e n}}, & |B|=\frac{|V(G)|}{\frac{e}{b}+1+\frac{e c}{b i}+\frac{h}{n}}, \\
|R|=\frac{|V(G)|}{\frac{i}{c}+\frac{i b}{c e}+1+\frac{i b h}{c e n}}, & |G|=\frac{|V(G)|}{\frac{n e}{h b}+\frac{n}{h}+\frac{n e c}{h b i}+1} .
\end{array}
$$

(3) if $b, c, l \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{b}{e}+\frac{c}{i}+\frac{c l}{i o}} & |B|=\frac{|V(G)|}{\frac{e}{b}+1+\frac{e c}{b i}+\frac{e c l}{b i o}}, \\
|R|=\frac{|V(G)|}{\frac{i}{c}+\frac{i b}{c e}+1+\frac{l}{o}} & ,
\end{array}
$$

(4) if $\mathrm{b}, \mathrm{d}, \mathrm{g} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{b}{e}+\frac{b g}{e j}+\frac{d}{m}}, & |B|=\frac{|V(G)|}{\frac{e}{b}+1+\frac{e}{j}+\frac{e d}{b m}}, \\
|\mathrm{R}|=\frac{|V(G)|}{\frac{j e}{g b}+\frac{j}{g}+1+\frac{j e b}{g b m}}, & |G|=\frac{|V(G)|}{\frac{m}{d}+\frac{\mathfrak{m b}}{\mathrm{de}}+\frac{\mathfrak{m b g}}{\mathrm{dej}}+1} .
\end{array}
$$

(5) if $\mathrm{b}, \mathrm{d}, \mathrm{l} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{b}{e}+\frac{d o}{m l}+\frac{d}{m}}, & |B|=\frac{|V(G)|}{\frac{e}{b}+1+\frac{e d o}{b m l}+\frac{e d}{b m}}, \\
|\mathrm{R}|=\frac{|V(G)|}{\frac{l m}{o d}+\frac{\mathrm{lmb}}{\mathrm{ode}}+1+\frac{\mathrm{l}}{o}}, & |G|=\frac{|V(G)|}{\frac{m}{d}+\frac{m b}{d e}+\frac{o}{l}+1} .
\end{array}
$$

(6) if $\mathrm{b}, \mathrm{g}, \mathrm{h} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{b}{e}+\frac{b g}{e j}+\frac{b h}{e n}}, & |B|=\frac{|V(G)|}{\frac{e}{b}+1+\frac{g}{j}+\frac{h}{n}}, \\
|R|=\frac{|V(G)|}{\frac{j e}{g b}+\frac{j}{g}+1+\frac{j h}{g n}}, & |G|=\frac{|V(G)|}{\frac{n e}{h b}+\frac{n}{h}+\frac{n g}{h j}+1} .
\end{array}
$$

(7) if $b, g, l \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{b}{e}+\frac{\mathrm{bg}}{e j}+\frac{\mathrm{bgl}}{e j o}}, & |\mathrm{~B}|=\frac{|\mathrm{V}(\mathrm{G})|}{\frac{e}{\mathrm{~b}}+1+\frac{g}{j}+\frac{\mathrm{gl}}{\mathrm{jo}}}, \\
|\mathrm{R}|=\frac{|V(G)|}{\frac{j e}{g b}+\frac{j}{b}+1+\frac{\mathrm{l}}{\mathrm{o}}}, & |G|=\frac{|V(G)|}{\frac{o j e}{\mathrm{lgb}}+\frac{\mathrm{oj}}{\mathrm{lg}}+\frac{\mathrm{o}}{\mathrm{l}}+1} .
\end{array}
$$

(8) if $b, h, l \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{b}{e}+\frac{b h o}{e n l}+\frac{b h}{e n}}, & |B|=\frac{|V(G)|}{\frac{e}{b}+1+\frac{h o}{n l}+\frac{h}{n}}, \\
|R|=\frac{|V(G)|}{\frac{\ln e}{o h b}+\frac{\mathfrak{l n}}{o h}+1+\frac{l}{o}}, & |G|=\frac{|V(G)|}{\frac{n e}{h b}+\frac{n}{h}+\frac{o}{l}+1} .
\end{array}
$$

(9) if $\mathrm{c}, \mathrm{d}, \mathrm{g} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{c j}{i g}+\frac{c}{i}+\frac{d}{m}}, & |B|=\frac{|V(G)|}{\frac{g i}{c j}+1+\frac{g}{j}+\frac{g i d}{j c m}}, \\
|R|=\frac{|V(G)|}{\frac{i}{c}+\frac{j}{g}+1+\frac{i d}{c m}}, & |G|=\frac{|V(G)|}{\frac{m}{d}+\frac{m c j}{d i g}+\frac{m c}{d i}+1} .
\end{array}
$$

(10) if $\mathrm{c}, \mathrm{d}, \mathrm{h} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{d n}{m h}+\frac{c}{i}+\frac{d}{m}}, & |B|=\frac{|V(G)|}{\frac{h m}{d n}+1+\frac{h m c}{n d i}+\frac{h}{n}}, \\
|R|=\frac{|V(G)|}{\frac{i}{c}+\frac{i d n}{c m h}+1+\frac{i d}{c m}}, & |G|=\frac{|V(G)|}{\frac{m}{d}+\frac{n}{h}+\frac{m \mathfrak{c}}{d i}+1} .
\end{array}
$$

(11) if $\mathrm{c}, \mathrm{g}, \mathrm{h} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{c j}{i g}+\frac{c}{i}+\frac{c j h}{i g h}}, & |B|=\frac{|V(G)|}{\frac{g i}{j c}+1+\frac{g}{j}+\frac{h}{n}}, \\
|R|=\frac{|V(G)|}{\frac{i}{c}+\frac{j}{g}+1+\frac{j h}{g n}}, & |G|=\frac{|V(G)|}{\frac{n g i}{h i c}+\frac{n}{h}+\frac{n g}{h j}+1} .
\end{array}
$$

(12) if $\mathrm{c}, \mathrm{g}, \mathrm{l} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{c j}{i g}+\frac{c}{i}+\frac{c l}{i o}} & |B|=\frac{|V(G)|}{\frac{g i}{j c}+1+\frac{g}{j}+\frac{g l}{j o}}, \\
|R|=\frac{|V(G)|}{\frac{i}{c}+\frac{j}{g}+1+\frac{l}{o}}, & |G|=\frac{|V(G)|}{\frac{o i}{l c}+\frac{o j}{l g}+\frac{o}{l}+1}
\end{array}
$$

(13) if $c, h, l \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{c l n}{i o h}+\frac{c}{i}+\frac{c l}{i o}} & |B|=\frac{|V(G)|}{\frac{h o i}{n l c}+1+\frac{h o}{n l}+\frac{h}{n}} \\
|\mathrm{R}|=\frac{|V(G)|}{\frac{i}{c}+\frac{l n}{o h}+1+\frac{l}{o}}, & |G|=\frac{|V(G)|}{\frac{o i}{l c}+\frac{n}{h}+\frac{o}{l}+1}
\end{array}
$$

(14) if $\mathrm{d}, \mathrm{g}, \mathrm{h} \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{d n}{m h}+\frac{d n g}{m h j}+\frac{d}{m}} & \\
|B|=\frac{|V(G)|}{\frac{|V(G)|}{\frac{h m}{n d}+1+\frac{g}{j}+\frac{h}{n}}} \begin{array}{ll}
\frac{j h m}{g n d}+\frac{j}{g}+1+\frac{j h}{g n} &
\end{array} & |G|=\frac{|V(G)|}{\frac{m}{d}+\frac{n}{h}+\frac{n g}{h j}+1} .
\end{array}
$$

(15) if $d, g, l \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{d o j}{m l g}+\frac{d o}{m l}+\frac{d}{m}} & \\
|\mathrm{R}|=\frac{|\mathrm{V}(\mathrm{G})|}{} \begin{array}{ll}
\frac{\mathrm{lm}}{\mathrm{od}}+\frac{j}{g}+1+\frac{\mathrm{l}}{\mathrm{o}} &
\end{array} & |\mathrm{~V}(\mathrm{G})| \\
\frac{\mathrm{glm}}{\mathrm{jod}}+1+\frac{g}{j}+\frac{\mathrm{gl}}{\mathrm{jo}}
\end{array},
$$

(16) if $d, h, l \neq 0$, then

$$
\begin{array}{ll}
|W|=\frac{|V(G)|}{1+\frac{d n}{m h}+\frac{d o}{m l}+\frac{d}{m}}, & |B|=\frac{|V(G)|}{\frac{h m}{n d}+1+\frac{h o}{n l}+\frac{h}{n}}, \\
|\mathrm{R}|=\frac{|V(G)|}{\frac{\mathrm{lm}}{\mathrm{od}}+\frac{\mathrm{ln}}{\mathrm{oh}}+1+\frac{\mathrm{l}}{\mathrm{o}}}, & |G|=\frac{|V(G)|}{\frac{m}{d}+\frac{\mathfrak{n}}{\mathrm{h}}+\frac{\mathrm{o}}{\mathrm{l}}+1} .
\end{array}
$$

Remark 2.3. The distinct eigenvalues of the graph $\operatorname{GP}(7,1)$ are the numbers 3,1 , The distinct eigenvalues of the graph $\operatorname{GP}(8,1)$ are the numbers $3,1,-1$, The distinct eigenvalues of the graph $\operatorname{GP}(8,2)$ are the numbers 1,3 and the distinct eigenvalues of the graph $\operatorname{GP}(8,3)$ are the numbers $3,1,-1$.

By using Theorem 2.1, we only have the following matrices, which we have shown with $\mathrm{P}_{1}, \cdots, \mathrm{P}_{31}$.

$$
\begin{aligned}
& P_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 0 & 1 & 2 \\
0 & 1 & 0 & 2 \\
1 & 1 & 1 & 0
\end{array}\right], \quad P_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 0 & 1 & 2 \\
0 & 1 & 0 & 2 \\
1 & 1 & 1 & 0
\end{array}\right], \quad P_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], \quad P_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 0 & 3 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right], \quad P_{5}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
1 & 1 & 1 & 0
\end{array}\right], \\
& P_{6}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 2 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad P_{7}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 1 & 1 & 1 \\
0 & 1 & 2 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], \quad P_{8}=\left[\begin{array}{llll}
0 & 0 & 0 & 3 \\
0 & 1 & 2 & 0 \\
0 & 1 & 0 & 2 \\
1 & 0 & 2 & 0
\end{array}\right], \quad P_{9}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 1 & 0 & 2 \\
1 & 0 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \quad P_{10}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], \\
& P_{11}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 1 & 2 & 0 \\
1 & 2 & 0 & 0 \\
2 & 0 & 0 & 1
\end{array}\right], \quad P_{12}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 2 & 0 & 1 \\
1 & 0 & 2 & 0 \\
2 & 1 & 0 & 0
\end{array}\right], \quad P_{13}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 2 & 1 & 0 \\
1 & 1 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right], \quad P_{14}=\left[\begin{array}{llll}
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3 \\
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 1
\end{array}\right], \quad P_{15}=\left[\begin{array}{llll}
0 & 0 & 3 & 0 \\
0 & 0 & 1 & 2 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 2
\end{array}\right], \\
& P_{16}=\left[\begin{array}{llll}
0 & 0 & 3 & 0 \\
0 & 0 & 1 & 2 \\
2 & 1 & 0 & 0 \\
0 & 1 & 0 & 2
\end{array}\right], \quad P_{17}=\left[\begin{array}{llll}
0 & 0 & 3 & 0 \\
0 & 1 & 0 & 2 \\
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 1
\end{array}\right], \quad P_{18}=\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
1 & 0 & 0 & 2 \\
0 & 0 & 2 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad P_{19}=\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 \\
1 & 0 & 2 & 0
\end{array}\right], \quad P_{20}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \\
& P_{21}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \quad P_{22}=\left[\begin{array}{llll}
0 & 1 & 2 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right], \quad P_{23}=\left[\begin{array}{llll}
0 & 3 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 1 & 2 & 0
\end{array}\right], \quad P_{24}=\left[\begin{array}{llll}
0 & 3 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 2 & 1 \\
0 & 1 & 1 & 1
\end{array}\right], \quad P_{25}=\left[\begin{array}{llll}
0 & 3 & 0 & 0 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right], \\
& P_{26}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \quad P_{27}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 2 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad P_{28}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \quad P_{29}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \quad P_{30}=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 3 \\
0 & 1 & 2 & 0
\end{array}\right], \\
& P_{31}=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 1 & 2 & 0
\end{array}\right] .
\end{aligned}
$$

3. Perfect 4-colorings of some generalized peterson graph

The parameter matrices of $\operatorname{GP}(7,1), \operatorname{GP}(8,1), \operatorname{GP}(8,2)$ and $\operatorname{GP}(8,3)$ graphs are enumerated in the next teorems.

Theorem 3.1. The graph $\operatorname{GP}(7,1)$ has no perfect 4-colorings.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph $\operatorname{GP}(7,1)$ may be one of the matrices $\mathrm{P}_{1}, \cdots, \mathrm{P}_{31}$. By using Theorem 2.2, only the matrices $\mathrm{P}_{1}, \mathrm{P}_{16}, \mathrm{P}_{26}$ can be a parameter matrices, because the number of white, black, red and green are an integer. For matrix P_{1}, each vertex with color green has one adjacent vertices with color green. Now have the following possibilities:
(1) $T\left(a_{1}\right)=B, T\left(a_{2}\right)=T\left(a_{3}\right)=T\left(a_{4}\right)=T\left(a_{5}\right)=T\left(a_{9}\right)=R, T\left(a_{6}\right)=T\left(a_{7}\right)=T\left(a_{8}\right)=T\left(a_{13}\right)=G$, $T\left(a_{14}\right)=W$ and then $T\left(a_{11}\right)=G, T\left(a_{10}\right)=T\left(a_{12}\right)=B$, which is a contradiction with four row of matrix P_{1}.
(2) $T\left(a_{1}\right)=W, T\left(a_{3}\right)=T\left(a_{14}\right)=B, T\left(a_{4}\right)=T\left(a_{5}\right)=T\left(a_{11}\right)=T\left(a_{12}\right)=T\left(a_{13}\right)=R$ and $T\left(a_{6}\right)=T\left(a_{7}\right)=$ $T\left(a_{10}\right)=G$ then $T\left(a_{2}\right)=T\left(a_{8}\right)=T\left(a_{9}\right)=G$,which is a contradiction with the four row of matrix P_{1}. Hence graph $\operatorname{GP}(7,1)$ has no perfect 4 -colorings with matrix P_{1}.

Similar to matrix P_{1}, we can proof for matrices P_{16} and P_{26} as follows:
For matrix P_{16}, each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:
(3) $\mathrm{T}\left(\mathrm{a}_{1}\right)=\mathrm{T}\left(\mathrm{a}_{2}\right)=\mathrm{T}\left(\mathrm{a}_{9}\right)=\mathrm{T}\left(\mathrm{a}_{10}\right)=\mathrm{G}, \mathrm{T}\left(\mathrm{a}_{4}\right)=\mathrm{T}\left(\mathrm{a}_{6}\right)=\mathrm{T}\left(\mathrm{a}_{12}\right)=\mathrm{R}, \mathrm{T}\left(\mathrm{a}_{3}\right)=\mathrm{T}\left(\mathrm{a}_{8}\right)=\mathrm{B}$ and $T\left(a_{5}\right)=T\left(a_{11}\right)=T\left(a_{13}\right)=W$ then $T\left(a_{14}\right)=R$ and $T\left(a_{7}\right)=G$, which is a contradiction with the three row of matrix P_{16}.
(4) $\mathrm{T}\left(\mathrm{a}_{1}\right)=\mathrm{T}\left(\mathrm{a}_{5}\right)=\mathrm{T}\left(\mathrm{a}_{9}\right)=\mathrm{T}\left(\mathrm{a}_{11}\right)=\mathrm{T}\left(\mathrm{a}_{13}\right)=\mathrm{W}, \mathrm{T}\left(\mathrm{a}_{3}\right)=\mathrm{B}, \mathrm{T}\left(\mathrm{a}_{2}\right)=\mathrm{T}\left(\mathrm{a}_{4}\right)=\mathrm{T}\left(\mathrm{a}_{6}\right)=\mathrm{T}\left(\mathrm{a}_{10}\right)=$ $T\left(a_{12}\right)=R$ then $T\left(a_{7}\right)=T\left(a_{8}\right)=R$ and $T\left(a_{14}\right)=B$, which is a contradiction with the three row of matrix P_{16}. Hence graph $\operatorname{GP}(7,1)$ has no perfect 4 -colorings with matrix P_{16}.

For matrix P_{26}, each vertex with color white has two adjacent vertices with color green, and each vertex with color green has zero adjacent vertices with color red. Now have the following possibilities:
(5) $\mathrm{T}\left(\mathrm{a}_{1}\right)=\mathrm{T}\left(\mathrm{a}_{3}\right)=\mathrm{T}\left(\mathrm{a}_{12}\right)=\mathrm{T}\left(\mathrm{a}_{14}\right)=\mathrm{B}, \mathrm{T}\left(\mathrm{a}_{4}\right)=\mathrm{T}\left(\mathrm{a}_{5}\right)=\mathrm{T}\left(\mathrm{a}_{6}\right)=\mathrm{T}\left(\mathrm{a}_{7}\right)=\mathrm{T}\left(\mathrm{a}_{13}\right)=\mathrm{R}, \mathrm{T}\left(\mathrm{a}_{8}\right)=$ $T\left(a_{10}\right)=T\left(a_{11}\right)=G$ then $T\left(a_{2}\right)=R$ and $T\left(a_{9}\right)=W$, which is a contradiction with the one row of matrix P_{26}.
(6) $\mathrm{T}\left(\mathrm{a}_{1}\right)=\mathrm{T}\left(\mathrm{a}_{2}\right)=\mathrm{T}\left(\mathrm{a}_{3}\right)=\mathrm{T}\left(\mathrm{a}_{10}\right)=\mathrm{T}\left(\mathrm{a}_{11}\right)=\mathrm{T}\left(\mathrm{a}_{14}\right)=\mathrm{R}, \mathrm{T}\left(\mathrm{a}_{4}\right)=\mathrm{T}\left(\mathrm{a}_{7}\right)=\mathrm{T}\left(\mathrm{a}_{8}\right)=\mathrm{T}\left(\mathrm{a}_{12}\right)=\mathrm{B}$, $T\left(a_{5}\right)=T\left(a_{9}\right)=G$ then $T\left(a_{6}\right)=G$ and $T\left(a_{13}\right)=R$, which is a contradiction with the four row of matrix P_{26}. Hence graph $\operatorname{GP}(7,1)$ has no perfect 4 -colorings with matrix P_{26}.

Theorem 3.2. The graph $\operatorname{GP}(8,1)$ has a perfect 4-colorings only with the matrices $\mathrm{P}_{10}, \mathrm{P}_{20}, \mathrm{P}_{21}$ and P_{28}.
Proof. A parameter matrix corresponding to perfect 4-colorings of the graph $\operatorname{GP}(8,1)$ may be one of the matrices $\mathrm{P}_{1}, \cdots, \mathrm{P}_{31}$. Using the Theorem 2.2 , only the matrices $\mathrm{P}_{4}, \mathrm{P}_{10}, \mathrm{P}_{12}, \mathrm{P}_{13}, \mathrm{P}_{19}, \mathrm{P}_{20}, \mathrm{P}_{21}, \mathrm{P}_{22}, \mathrm{P}_{23}, \mathrm{P}_{24}$, and P_{28} can be a parameter matrices, because the number of white, black, red and green are an integer. For matrix P_{4}, each vertex with color white has three adjacent vertices with color green and each vertex with color red has one adjacent vertices with color green. Now have the following possibilities:
(1) $\mathrm{T}\left(\mathrm{a}_{1}\right)=\mathrm{W}, \mathrm{T}\left(\mathrm{a}_{4}\right)=\mathrm{B}, \mathrm{T}\left(\mathrm{a}_{3}\right)=\mathrm{T}\left(\mathrm{a}_{5}\right)=\mathrm{T}\left(\mathrm{a}_{11}\right)=\mathrm{T}\left(\mathrm{a}_{12}\right)=\mathrm{R}, \mathrm{T}\left(\mathrm{a}_{2}\right)=\mathrm{T}\left(\mathrm{a}_{7}\right)=\mathrm{T}\left(\mathrm{a}_{8}\right)=\mathrm{T}\left(\mathrm{a}_{9}\right)=$ $T\left(a_{10}\right)=T\left(a_{13}\right)=G$ then $T\left(a_{14}\right)=B$ and $T\left(a_{15}\right)=W$ and $T\left(a_{16}\right)=R$, which is a contradiction with one row of the matrix P_{4}.
(2) $T\left(a_{1}\right)=T\left(a_{2}\right)=T\left(a_{6}\right)=T\left(a_{9}\right)=T\left(a_{11}\right)=T\left(a_{14}\right)=G, T\left(a_{3}\right)=T\left(a_{5}\right)=T\left(a_{12}\right)=T\left(a_{13}\right)=R$, $T\left(a_{7}\right)=T\left(a_{10}\right)=W, T\left(a_{4}\right)=B$ then $T\left(a_{8}\right)=T\left(a_{15}\right)=G$ and $T\left(a_{16}\right)=R$, which is a contradiction with three row of the matrix P_{4}. Hence graph $\mathrm{GP}(8,1)$ has no perfect 4 - colorings with the matrix P_{4}.

The proof of the matrices $\mathrm{P}_{12}, \mathrm{P}_{13}, \mathrm{P}_{19}, \mathrm{P}_{22}, \mathrm{P}_{23}, \mathrm{P}_{24}$ is similar to the proof of the matrix P_{4}. Consider the mapping T_{1}, T_{2}, T_{3} and T_{4} as follows:

$$
\begin{array}{ll}
T_{1}\left(a_{1}\right)=T_{1}\left(a_{6}\right)=T_{1}\left(a_{10}\right)=T_{1}\left(a_{13}\right)=W, & T_{1}\left(a_{3}\right)=T_{1}\left(a_{4}\right)=T_{1}\left(a_{15}\right)=T_{1}\left(a_{16}\right)=B \\
T_{1}\left(a_{7}\right)=T_{1}\left(a_{8}\right)=T_{1}\left(a_{11}\right)=T_{1}\left(a_{12}\right)=R, & T_{1}\left(a_{2}\right)=T_{1}\left(a_{5}\right)=T_{1}\left(a_{9}\right)=T_{1}\left(a_{14}\right)=G . \\
T_{2}\left(a_{1}\right)=T_{2}\left(a_{5}\right)=T_{2}\left(a_{11}\right)=T_{2}\left(a_{15}\right)=W, & T_{2}\left(a_{2}\right)=T_{2}\left(a_{6}\right)=T_{2}\left(a_{12}\right)=T_{2}\left(a_{16}\right)=B, \\
T_{2}\left(a_{4}\right)=T_{2}\left(a_{8}\right)=T_{2}\left(a_{10}\right)=T_{2}\left(a_{14}\right)=R, & T_{2}\left(a_{3}\right)=T_{2}\left(a_{7}\right)=T_{2}\left(a_{9}\right)=T_{2}\left(a_{13}\right)=G . \\
T_{3}\left(a_{1}\right)=T_{3}\left(a_{5}\right)=T_{3}\left(a_{11}\right)=T_{3}\left(a_{15}\right)=W, & T_{3}\left(a_{2}\right)=T_{3}\left(a_{6}\right)=T_{3}\left(a_{12}\right)=T_{3}\left(a_{16}\right)=B, \\
T_{3}\left(a_{9}\right)=T_{3}\left(a_{10}\right)=T_{3}\left(a_{13}\right)=T_{3}\left(a_{14}\right)=R, & T_{3}\left(a_{3}\right)=T_{3}\left(a_{4}\right)=T_{3}\left(a_{7}\right)=T_{3}\left(a_{8}\right)=G . \\
T_{4}\left(a_{1}\right)=T_{4}\left(a_{4}\right)=T_{4}\left(a_{5}\right)=T_{4}\left(a_{8}\right)=W, & T_{4}\left(a_{10}\right)=T_{4}\left(a_{11}\right)=T_{4}\left(a_{14}\right)=T_{4}\left(a_{15}\right)=B, \\
T_{4}\left(a_{2}\right)=T_{4}\left(a_{3}\right)=T_{4}\left(a_{6}\right)=T_{4}\left(a_{7}\right)=R, & T_{4}\left(a_{9}\right)=T_{4}\left(a_{12}\right)=T_{4}\left(a_{13}\right)=T_{4}\left(a_{4}\right)=G .
\end{array}
$$

It is clear that T_{1}, T_{2}, T_{3} and T_{4} are perfect 4-coloring with the matrices P_{10}, P_{20}, P_{21} and P_{28} respectively.
Theorem 3.3. The graph $\operatorname{GP}(8,2)$ has a perfect 4 -colorings with only the matrices P_{10} and P_{12}.
Proof. A parameter matrix corresponding to perfect 4-colorings of the graph $\operatorname{GP}(8,2)$ may be one of the matrices $\mathrm{P}_{1}, \cdots, \mathrm{P}_{31}$. By using Theorem 2.2, graph $\mathrm{GP}(8,2)$ can have perfect 4 -colorings only with matrices $\mathrm{P}_{10}, \mathrm{P}_{12}, \mathrm{P}_{13}, \mathrm{P}_{19}, \mathrm{P}_{22}$ and P_{24}, because the number of white, black, red and green are an integer. For matrix P_{13}, each vertex with color white has one adjacent vertices with color red and two adjacent vertices with color green. Now have the following possibilities:
(1) $\mathrm{T}\left(\mathrm{a}_{1}\right)=\mathrm{T}\left(\mathrm{a}_{4}\right)=\mathrm{T}\left(\mathrm{a}_{10}\right)=\mathrm{T}\left(\mathrm{a}_{15}\right)=\mathrm{W}, \mathrm{T}\left(\mathrm{a}_{2}\right)=\mathrm{T}\left(\mathrm{a}_{3}\right)=\mathrm{T}\left(\mathrm{a}_{9}\right)=\mathrm{T}\left(\mathrm{a}_{11}\right)=\mathrm{T}\left(\mathrm{a}_{12}\right)=\mathrm{T}\left(\mathrm{a}_{13}\right)=$ $G, T\left(a_{7}\right)=T\left(a_{8}\right)=R, T\left(a_{14}\right)=T\left(a_{16}\right)=B$, then $T\left(a_{5}\right)=W$ and $T\left(a_{6}\right)=B$, which is a contradiction with one row of the matrix P_{13}.
(2) $\mathrm{T}\left(\mathrm{a}_{1}\right)=\mathrm{T}\left(\mathrm{a}_{7}\right)=\mathrm{T}\left(\mathrm{a}_{8}\right)=\mathrm{T}\left(\mathrm{a}_{9}\right)=\mathrm{T}\left(\mathrm{a}_{15}\right)=\mathrm{B}, \mathrm{T}\left(\mathrm{a}_{3}\right)=\mathrm{T}\left(\mathrm{a}_{5}\right)=\mathrm{T}\left(\mathrm{a}_{14}\right)=\mathrm{W}, \mathrm{T}\left(\mathrm{a}_{4}\right)=\mathrm{T}\left(\mathrm{a}_{6}\right)=$ $T\left(a_{12}\right)=G, T\left(a_{11}\right)=T\left(a_{13}\right)=R$, then $T\left(a_{2}\right)=T\left(a_{16}\right)=R$ and $T\left(a_{10}\right)=W$, which is a contradiction with one row of the matrix P_{13}. Hence graph $\mathrm{GP}(8,2)$ has no perfect 4 -colorings with the matrix P_{13}.

The proof of the matrices P_{19}, P_{22}, P_{24} is similar to the proof of the matrix P_{13}. Consider the mapping T_{1} and T_{2} as follows:

$$
\begin{aligned}
& T_{1}\left(a_{11}\right)=T_{1}\left(a_{12}\right)=T_{1}\left(a_{15}\right)=T_{1}\left(a_{16}\right)=W, \quad T_{1}\left(a_{1}\right)=T_{1}\left(a_{2}\right)=T_{1}\left(a_{5}\right)=T_{1}\left(a_{6}\right)=B, \\
& T_{1}\left(a_{3}\right)=T_{1}\left(a_{4}\right)=T_{1}\left(a_{7}\right)=T_{1}\left(a_{8}\right)=R, \quad T_{1}\left(a_{9}\right)=T_{1}\left(a_{10}\right)=T_{1}\left(a_{13}\right)=T_{1}\left(a_{14}\right)=G . \\
& T_{2}\left(a_{1}\right)=T_{2}\left(a_{3}\right)=T_{2}\left(a_{5}\right)=T_{2}\left(a_{7}\right)=W, \quad T_{2}\left(a_{10}\right)=T_{2}\left(a_{12}\right)=T_{2}\left(a_{14}\right)=T_{2}\left(a_{16}\right)=B, \\
& T_{2}\left(a_{9}\right)=T_{2}\left(a_{11}\right)=T_{2}\left(a_{13}\right)=T_{2}\left(a_{15}\right)=R, \quad T_{2}\left(a_{2}\right)=T_{2}\left(a_{4}\right)=T_{2}\left(a_{6}\right)=T_{2}\left(a_{8}\right)=G .
\end{aligned}
$$

It is clear that T_{1} and T_{2} are perfect 4-coloring with the matrices P_{10} and P_{12} respectively.
Theorem 3.4. The graph $\mathrm{GP}(8,3)$ has a perfect 4-colorings only with the matrices $\mathrm{P}_{20}, \mathrm{P}_{21}$ and P_{28}.
Proof. A parameter matrix corresponding to perfect 4-colorings of the graph $\operatorname{GP}(8,3)$ may be one of the matrices $\mathrm{P}_{1}, \cdots, \mathrm{P}_{31}$. By using Theorem 2.2, graph GP $(8,3)$ can have perfect 4 - colorings with matrices $P_{10}, P_{11}, P_{12}, P_{13}, P_{19}, P_{20}, P_{21}, P_{22}, P_{23}, P_{24}$ and P_{28}, because the number of white, black, red and green are an integer. For matrix P_{10}, each vertex with color white has one adjacent vertices with color red and two adjacent vertices with color green. Now have the following possibilities:
(1) $T\left(a_{1}\right)=T\left(a_{6}\right)=T\left(a_{8}\right)=T\left(a_{9}\right)=B, T\left(a_{2}\right)=T\left(a_{3}\right)=T\left(a_{5}\right)=T\left(a_{10}\right)=R, T\left(a_{7}\right)=T\left(a_{12}\right)=T\left(a_{14}\right)=$ $T\left(a_{16}\right)=G, T\left(a_{11}\right)=T\left(a_{13}\right)=W$, then $T\left(a_{4}\right)=T\left(a_{15}\right)=W$, which is a contradiction with one row of the matrix P_{10}.
(2) $T\left(a_{1}\right)=T\left(a_{5}\right)=T\left(a_{16}\right)=R, T\left(a_{2}\right)=T\left(a_{11}\right)=W, T\left(a_{3}\right)=T\left(a_{10}\right)=T\left(a_{12}\right)=T\left(a_{13}\right)=T\left(a_{14}\right)=G$, $T\left(a_{4}\right)=T\left(a_{6}\right)=T\left(a_{15}\right)=B$, then $T\left(a_{7}\right)=T\left(a_{8}\right)=T\left(a_{9}\right)=W$, which is a contradiction with one row of the matrix P_{10}. Hence graph $\operatorname{GP}(8,3)$ has no perfect 4 -colorings with the matrix P_{10}.

The proof of the matrices $P_{11}, P_{12}, P_{13}, P_{19}, P_{20}, P_{23}, P_{24}$ is similar to the proof of the matrix P_{10}. Consider the mapping T_{1}, T_{2} and T_{3} as follows :

$$
\begin{array}{lll}
T_{1}\left(a_{1}\right)=T_{1}\left(a_{4}\right)=T_{1}\left(a_{9}\right)=T_{1}\left(a_{12}\right)=W, & T_{1}\left(a_{3}\right)=T_{1}\left(a_{6}\right)=T_{1}\left(a_{11}\right)=T_{1}\left(a_{14}\right)=B, \\
T_{1}\left(a_{5}\right)=T_{1}\left(a_{8}\right)=T_{1}\left(a_{13}\right)=T_{1}\left(a_{16}\right)=R, & T_{1}\left(a_{2}\right)=T_{1}\left(a_{7}\right)=T_{1}\left(a_{10}\right)=T_{1}\left(a_{15}\right)=G . \\
& & \\
T_{2}\left(a_{1}\right)=T_{2}\left(a_{4}\right)=T_{2}\left(a_{9}\right)=T_{2}\left(a_{12}\right)=W, & T_{2}\left(a_{5}\right)=T_{2}\left(a_{8}\right)=T_{2}\left(a_{12}\right)=T_{2}\left(a_{16}\right)=B, \\
T_{2}\left(a_{2}\right)=T_{2}\left(a_{3}\right)=T_{2}\left(a_{10}\right)=T_{2}\left(a_{11}\right)=R, & T_{2}\left(a_{6}\right)=T_{2}\left(a_{7}\right)=T_{2}\left(a_{14}\right)=T_{2}\left(a_{15}\right)=G . \\
& \\
T_{3}\left(a_{1}\right)=T_{3}\left(a_{2}\right)=T_{3}\left(a_{9}\right)=T_{3}\left(a_{10}\right)=W, & T_{3}\left(a_{4}\right)=T_{3}\left(a_{7}\right)=T_{3}\left(a_{12}\right)=T_{3}\left(a_{15}\right)=B, \\
T_{3}\left(a_{3}\right)=T_{3}\left(a_{8}\right)=T_{3}\left(a_{11}\right)=T_{3}\left(a_{16}\right)=R, & T_{3}\left(a_{5}\right)=T_{3}\left(a_{6}\right)=T_{3}\left(a_{13}\right)=T_{3}\left(a_{14}\right)=G .
\end{array}
$$

It is clear that T_{1}, T_{2} and T_{3} are perfect 4-coloring with the matrices P_{20}, P_{21} and P_{28} respectively.
Finally, we summarize the results of this paper in the following table.

Table 1: Parameter matrices of some generalized peterson graph

Graphs	Parameter Matrices
$\mathrm{GP}(7,1)$	X
$\mathrm{GP}(8,1)$	$\mathrm{P}_{10}, \mathrm{P}_{20}, \mathrm{P}_{21}, \mathrm{P}_{28}$
$\mathrm{GP}(8,2)$	$\mathrm{P}_{10}, \mathrm{P}_{12}$
$\mathrm{GP}(8,3)$	$\mathrm{P}_{20}, \mathrm{P}_{21}, \mathrm{P}_{28}$

References

[1] M. Alaeiyan, Z. Vahedi, M. Maghasedi, Perfect 4-colorings of the 3-regular graphs of order at most 8, Journal of mathematical extention (2021), 1-16. 2.2
[2] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs $J(6,3)$ and $J(7,3)$, Lecture Notes in Computer Science 5228 (2008), 11-19. 1
[3] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs J $(8,3)$ and $J(8,4)$ with two colors, Journal of Applied and Industrial Mathematics 5 (2011), 19-30. 1
[4] D.G. Fon-Der-Flaass, A bound on correlation immunity, Siberian Electronic Mathematical Reports Journal 4 (2007), 133-135. 1
[5] D.G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal 4(2007), 923-930. 1
[6] D.G. Fon-der-Flaass, Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity, Siberian Mathematical Journal 4 (2007), 292-295. 1
[7] A.L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs J(v,3), Journal of Combinatorial Designs 21 (2013), 232-252. 1
[8] C. Godsil, Compact graphs and equitable partitions, Linear Algebra and Its Application 255(1997), 259-266. 1, 2.1

[^0]: *Corresponding author
 Email addresses: alaeiyan@iust.ac.ir (Mehdi Alaeiyan), zahra.shokoohi75@yahoo.com (Zahra Shokoohi)

